
ELLIPTIC CURVE CRYPTOGRAPHY ON SMART
CARDS WITHOUT COPROCESSORS

Adam D. Woodbury
Electrical and Computer Engineering Department

adw@ece.wpi.edu

Daniel V. Bailey
Computer Science Department

bailey@cs.wpi.edu

Christof Paar
Electrical and Computer Engineering Department, Computer Science Department

christof@ece.wpi.edu

Worcester Polytechnic Institute

Worcester, MA 01609 USA

The Fourth Smart Card Research and Advanced Applications

(CARDIS 2000) Conference, September 20-22, 2000, Bristol, UK.

Abstract This contribution describes how an elliptic curve cryptosystem can be imple-
mented on very low cost microprocessors with reasonable performance. We
focus in this paper on the Intel 8051 family of microcontrollers popular in smart
cards and other cost-sensitive devices. The implementation is based on the use
of the finite fieldGF ((28− 17)17) which is particularly suited for low end 8-bit
processors. Two advantages of our method are that subfield modular reduction
can be performed infrequently, and that an adaption of Itoh and Tsujii’s inversion
algorithm is used for the group operation. We show that an elliptic curve scalar
multiplication with a fixed point, which is the core operation for a signature
generation, can be performed in a group of order approximately 2134 in less than
2 seconds. Unlike other implementations, we do not make use of curves defined
over a subfield such as Koblitz curves.

1

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
9/20/2000

3. REPORT TYPE AND DATES COVERED
Report 9/20/2000

4. TITLE AND SUBTITLE
Elliptic Curve Cryptography on Smart Cards Without
Coprocessors

5. FUNDING NUMBERS

6. AUTHOR(S)
Adam D. Woodbury, Daniel V. Bailey, Christof Paar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

Booz Allen & Hamilton
8283 Greensboro Drive
McLean, VA 22102

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

Worchester Polytechnic
Institute

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

This contribution describes how an elliptic curve cryptosystem can be imple-mented on very
low cost microprocessors with reasonable performance. We focus in this paper on the Intel
8051 family of microcontrollers popular in smart cards and other cost-sensitive devices.
The implementation is based on the use of the finite field GF((28)).

14. SUBJECT TERMS
IATAC Collection, finite fields, fast arithmetic, Optimal Extension
Fields, modular reduction, elliptic curves, implementation, smart
cards, Intel 8051

15. NUMBER OF PAGES
20

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

2

Keywords: finite fields, fast arithmetic, Optimal Extension Fields, modular reduction, elliptic
curves, implementation, smart cards, Intel 8051

1. INTRODUCTION AND MOTIVATION

A typical large-scale smart card application such as retail banking can entail
the manufacture, personalization, issuance, and support of millions of smart
cards. Due to the grand scale involved, the success of such an application is
inherently linked to careful cost management of each of these areas. However,
budgetary constraints must be weighed against the basic requirements for smart
card security. The security services offered by a smart card often include both
data encryption and public-key operations. Creation of a digital signature is
often the most computationally intensive operation demanded of a smart card.

Smart cards often use 8-bit microcontrollers derived from 1970s families
such as the Intel 8051 [25] and the Motorola 6805. The use of public-key algo-
rithms such as RSA or DSA, which are based on modular arithmetic with very
long operands, on such a processor predictably results in unacceptably long
processing delays. To address this problem, many smart card microcontroller
manufacturers include additional on-chip hardware to accelerate long-number
arithmetic operations. However, in cost-sensitive applications it can be attrac-
tive to execute public-key operations on smart cards without coprocessors.

The challenge addressed in this contribution is to implement a public-key
digital signature algorithm which does not introduce performance problems or
require additional hardware beyond an 8-bit microcontroller. To address this
problem, we turn to the computational savings made available by elliptic curve
cryptosystems. An elliptic curve cryptosystem relies on the assumed hardness
of the Elliptic Curve Discrete Logarithm Problem (ECDLP) for its security. An
instance of the ECDLP is posed for an elliptic curve defined over a finite field
GF (pm) for p a prime andm a positive integer. The rule to perform the elliptic
curve group operation can be expressed in terms of arithmetic operations in the
finite field; thus the speed of the field arithmetic determines the speed of the
cryptosystem.

In this paper, we first compare the finite field arithmetic performance offered
by three different types of finite field which have been proposed for elliptic
curve cryptosystems (ECCs): binary fields GF (2n), even composite fields
GF ((2n)m), and finally Optimal Extension Fields (OEFs): GF (pm) for p a
pseudo-Mersenne prime, m chosen so that an irreducible binomial exists over
GF (p). Our results show that core field arithmetic operations in GF (2n) lag
behind the other two at a ratio of 5:1. The arithmetic offered by OEFs and
composite fields is comparable in performance. However, the recent result of
Gaudry, Hess, and Smart [10] has shown that the ECDLP can be easily solved
when even composite fields are used. Thus, in the main part of this paper we
present the results of applying OEFs to the construction of ECCs to calculate a

Elliptic Curve Cryptography on Smart Cards without Coprocessors 3

digital signature within a reasonable processing time with no need for hardware
beyond an 8-bit microcontroller. The target processor is an 8051, derivatives
of which are on many popular smart cards such as the Siemens 44C200 and
Phillips 82C852.

2. PREVIOUS WORK

This section reviews some of the most relevant previous contributions. It
has been long recognized that efficient finite field arithmetic is vital to achieve
acceptable performance with ECCs. Before an attack was published rendering
them unattractive, many implementors chose even-characteristic finite fields
with composite extension degree.

A paper due to De Win et.al. [8] analyzes the use of fieldsGF ((2n)m), with
a focus on n = 16, m = 11. This construction yields an extension field with
2176 elements. The subfield GF (216) has a Cayley table of sufficiently small
size to fit in the memory of a workstation. Optimizations for multiplication and
inversion in such composite fields of characteristic two are described in [11].

Schroeppel et.al. [24] report an implementation of an elliptic curve analogue
of Diffie-Hellman key exchange over GF (2155). The arithmetic is based on
a polynomial basis representation of the field elements. Another paper by De
Win et.al. [9] presents a detailed implementation of elliptic curve arithmetic
on a desktop PC, using finite fields of the form GF (p) and GF (2n), with a
focus on its application to digital signature schemes. For ECCs over prime
fields, their construction uses projective coordinates to eliminate the need for
inversion, along with a balanced ternary representation of the multiplier. Claus
Schnorr presents a digital signature algorithm based on the finite field discrete
logarithm problem in [23]. The algorithm is especially suited for smart cards.

The work in [1, 2] introduces OEFs and provides performance statistics
on high-end RISC workstations. A paper extending the work on OEFs ap-
pears in [16]. In this paper, sub-millisecond performance on high-end RISC
workstations is reported. Further, the authors achieve an ECC performance
of 1.95 msec on a 400 MHz Pentium II. A rump session presentation in [20]
introduces an efficient algorithm for exponentiation in an OEF which leads to
efficient implementation of cryptosystems based on the finite field discrete log-
arithm problem. Reference [3] introduces the Itoh-Tsujii inversion algorithm
for OEFs which is used in this contribution.

In [21], Naccache and M’Raı̈hi provide an overview of smart cards with
cryptographic capabilities, including a discussion of general implementation
concerns on various types of smart cards. In [22] a zero-knowledge system on
an 8-bit microprocessor without a coprocessor is presented.

In a white paper [6], Certicom Corp. provides performance data for an ECC
defined over GF (2163) on smart card CPUs without cryptographic coproces-

4

sors. Statistics on the performance of the finite field arithmetic operations are
not included. In addition, no details are provided about the particular ellip-
tic curve they chose as a basis for their implementation. When a Siemens
SLE44C80S is used as the smart card microcontroller, digital signature perfor-
mance of under 1.5 seconds is reported. An improved timing of 700 msec is
reported for a Siemens SLE66C80S, a 16-bit microcontroller. These processors
are variants of the Intel 8051 and hence these results are directly relevant to
those achieved in this paper.

3. FINITE FIELD CHOICE
To implement an ECC, an implementor must select a finite field in which

to perform arithmetic calculations. A finite field is identified with the notation
GF (pm) for p a prime and m a positive integer. It is well known that there
exists a finite field for all primes p and positive rational integers m. This field
is isomorphic to GF (p)[x]/(P (x)), where P (x) = xm +

∑m−1
i=0 pi x

i, pi ∈
GF (p), is a monic irreducible polynomial of degree m over GF (p). In the
following, a residue class will be identified with the polynomial of least degree
in this class.

Various finite fields admit the use of different algorithms for arithmetic.
Unsurprisingly, the choices of p, m, and P (x) can have a dramatic impact
on the performance of the ECC. In particular, there are generic algorithms for
arithmetic in an arbitrary finite field and there are specialized algorithms which
provide better performance in finite fields of a particular form. In the following,
we briefly describe field types proposed for ECC.

3.1. BINARY FIELDS

Implementors designing custom hardware for an ECC often choose p =
2 and P (x) to be a trinomial or pentanomial. Such choices of irreducible
polynomial lead to efficient methods for extension field modular reduction. We
will refer to this type of field as a “binary field,” in accordance with [13]. The
elements of the subfieldGF (2) can be represented by the logical signals 0 and
1. In this way, it is both speed and area efficient to construct hardware circuits
to perform the finite field arithmetic.

3.2. EVEN COMPOSITE FIELDS

In software, the choice of parameters varies considerably with the wide array
of available microprocessors. Many authors have suggested the use of p = 2
and m a composite number. In this case, the field GF (2m) is isomorphic
to GF ((2s)r), for m = sr and we call this an “even composite field.” Then
multiplication and inversion in the subfieldGF (2s) can be efficiently performed
by table look-up if s is not too large. In turn, these operations in the extension

Elliptic Curve Cryptography on Smart Cards without Coprocessors 5

fieldGF ((2s)r) are calculated using arithmetic in the subfield. As in the binary
field case, the irreducible polynomials for both the subfield and the extension
field are chosen to have minimal weight. This approach can provide superior
performance when compared to the case of binary fields. However, a recent
attack against ECCs over composite fields [10] makes them inappropriate for
use in practice.

3.3. OPTIMAL EXTENSION FIELDS

An alternative construction is to use OEFs [2], which choose p of the form
2n ± c, for n, c arbitrary positive rational integers. In this case, one chooses
p of appropriate size to use the multiply instructions available on the target
microcontroller. In addition, m is chosen so that an irreducible binomial
P (x) = xm − ω exists.

3.4. ROUGH PERFORMANCE COMPARISON

To address our need for fast field arithmetic in an ECC implemented on a
smart card, we compared these three options for finite field arithmetic on a stan-
dard Intel 8051 running at 12 MHz. Due to the 8051’s internal clock division
factor of 12, one internal clock cycle is equivalent to one microsecond. Thus,
these timings may be interpreted as either internal clock cycles or microsec-
onds. We implemented extension field multiplication for the three candidates
in assembly. We chose a field order of about 2135 which provides moderate se-
curity as will be discussed in Section 3.5 below. Field multiplication is the time
critical operation in most ECC realizations. We represented field elements with
a polynomial basis and took advantage of the standard arithmetic algorithms
available for each. Results are shown in Table 1.

Table 1 Extension field multiplication performance on an Intel 8051

Field appr. Field Order # Cycles for Multiply
GF (2135) 2135 19,600
GF ((28)17) 2136 7,479
GF ((28 − 17)17) 2134 5,084

Thus we see that binary fields offer performance which lags far behind the
other two options. Further, even composite fields have recently been shown
to have cryptographic weaknesses [10]. Hence, we are lead to conclude that
OEFs are the best choice for our application.

6

3.5. REMARK ON THE FINITE FIELD ORDER
CHOSEN

In recent work, Lenstra and Verheul show that under particular assumptions,
952-bit RSA and DSS systems may be considered to be of equivalent security to
132-bit ECC systems [17]. The authors further argue that 132-bit ECC keys are
adequate for commercial security in the year 2000. This notion of commercial
security is based on the hypothesis that a 56-bit block cipher offered adequate
security in 1982 for commercial applications.

This estimate has more recently been confirmed by the breaking of the
ECC2K-108 challenge [12]. First, note that the field GF ((28 − 17)17) has an
order of about 2134. Breaking the Koblitz (or anomalous) curve cryptosystem
over GF (2108) required slightly more effort than a brute force attack against
DES. Hence, an ECC over a 134-bit field which does not use a subfield curve is
by a factor of

√
108·
√

226 ≈ 216 harder to break than the ECC2K-108 challenge
or DES. Thus, based on current knowledge of EC attacks, the system proposed
here is roughly security equivalent to a 72-bit block cipher. This implies that
an attack would require about 65,000 times as much effort as breaking DES.
Note also that factoring the 512-bit RSA challenge took only about 2% of the
time required to break DES or the ECC2K-108 challenge. This implies that
an ECC over the proposed field GF (23917) offers far more security than the
512-bit RSA system which has been popular for fielded smart card applications.
In summary, we feel that our selection of field order provides medium-term
security which is sufficient for many current smart card applications.

Of course, the discussion above assumes that there are no special attacks
against ECC over OEFs. This assumption seems to be valid at the time of
writing [10].

To generate good elliptic curves over OEFs there are two basic approaches.
The first one is based on the use of a curve defined over GF (p) using the
method in [4, Section VI.4]. The second, more general, method uses Schoof’s
algorithm together with its improvements. The algebra package LiDIA v2.0.1
supports EC point counting over arbitrary fields.

4. ALGORITHMS FOR AN 8-BIT
MICROCONTROLLER

When choosing an algorithm to implement on 8-bit processors, it is important
that the parameter choices match the target platform. The Intel 8051 offers a
multiply instruction which computes the product of two integers each less than
28 = 256. Thus, we chose a prime 28 − 17 = 239 as our field characteristic
so that multiplication of elements in the prime subfield can use the ALU’s
multiplier. In addition, the nature of the OEF leads to an efficient reduction
method. Field elements are represented as polynomials of degree up to 16,

Elliptic Curve Cryptography on Smart Cards without Coprocessors 7

with coefficients in the prime subfieldGF (239). As mentioned in Section 3.3,
the polynomial is reduced modulo an irreducible polynomial, P (x) = xm−ω.
In this implementation P (x) = x17 − 2.

The key performance advantage of OEFs is due to fast modular reduction in
the subfield. Given a prime, p = 2n− c, reduction is performed by dividing the
number x into two n-bit words. The upper bits of x are “folded” into the lower
ones, leading to a very efficient reduction. The basic reduction step which
reduces a 2n-bit value x to a result with 1.5n bits is given by representing
x = x12n + x0, where x0, x1 < 2n. Thus a reduction is performed by:

x ≡ x1c+ x0 mod 2n − c, (1)

which takes one multiplication by c,one addition, and no divisions or inversions.
As will be seen in Section 4.1, the reduction principle for OEFs is expanded
for the implementation described here.

Furthermore, calculating a multiplicative inverse over the 8-bit subfield is
easily implemented with table look-up. There is a relative cost in increased
codesize, but the subfield inverse requires only two instructions. In contrast, a
method such as the Extended Euclidian Algorithm would require a great deal
more processing time. This operation is required for our optimized inversion
algorithm, as described in Section 4.3.

For elliptic curves, extension field multiplication is the most important basic
operation. The elliptic curve group operation requires 2 multiplications, 1
squaring, 1 inversion, and a number of additions that are relatively fast compared
with the first three. In our case, squaring and inversion performance depends
on the speed of multiplication. Therefore the speed of a single extension field
multiplication defines the speed of the group operation in general.

Addition is carried out in the extension field by m − 1 component-wise
additions modulo p. Subtraction is performed in a similar manner.

4.1. MULTIPLICATION
Extension field multiplication is implemented as polynomial multiplication

with a reduction modulo the irreducible binomialP (x) = x17−2. This modular
reduction is implemented in an analogous manner to the subfield modular
reduction outlined above. First, we observe that xm ≡ ω mod xm − ω. This
observation leads to the general expression for this reduction, given by

C(x) ≡ c′m−1x
m−1 + [ωc′2m−2 + c′m−2]xm−2 + · · ·

+[ωc′m+1 + c′1]x+ [ωc′m + c′0] mod xm − ω. (2)

Thus, product C of a multiplication A × B can be computed as shown in
Algorithm 1.1.

8

Algorithm 1.1 Extension Field Multiplication

Require: A(x) =
∑
aix

i, B(x) =
∑
bix

i ∈ GF (23917)/P (x), where
P (x) = xm − ω; ai, bi ∈ GF (239); 0 ≤ i < 17

Ensure: C(x) =
∑
cix

i = A(x)B(x), ci ∈ GF (239)
First we calculate the intermediate values for c′i, i = 17, 18, . . . , 32.
c′17 ← a1b16 + a2b15 + . . .+ a14b3 + a15b2 + a16b1

c′18 ← a2b16 + a3b15 + . . .+ a15b3 + a16b2

. . .
c′31 ← a15b16 + a16b15

c′32 ← a16b16

Now calculate ci, i = 0, 1, . . . , 16.
c0 ← a0b0 + ωc′17 mod 239
c1 ← a0b1 + a1b0 + ωc′18 mod 239
. . .
c15 ← a0b15 + a1b14 + . . .+ a14b1 + a15b0 + ωc′32 mod 239
c16 ← a0b16 + a1b15 + . . .+ a14b2 + a15b1 + a16b0 mod 239

As can be seen, extension field multiplication requires m2 inner products
aibj , andm− 1 multiplications by ω when the schoolbook method for polyno-
mial multiplication is used. Thesem2 +m−1 subfield multiplicationsform the
performance critical part of a field multiplication. In the earlier OEF work [1],
[2], a subfield multiplication was performed as single-precision integer multi-
plication resulting in a double-precision product with a subsequent reduction
modulo p. For OEFs with p = 2n ± c, c > 1, this approach requires 2 integer
multiplications and several shifts and adds using Algorithm 14.47 in [19]. A
key idea of this contribution is to deviate from this approach. We propose to
perform only one reduction modulo p per coefficient ci, i = 0, 1, . . . , 16. This
is achieved by allowing the residue class of the sum of integer products to be
represented by an integer larger than p. The remaining task is to efficiently
reduce a result which spreads over more than two words. Hence, we can reduce
the number of reductions tom, while still requiringm2+m−1 multiplications.

During the inner product calculations, we perform all required multiplica-
tions for a resulting coefficient, accumulate a multi-word integer, and then
perform a reduction. The derivation of the maximum value for the multi-word
integer ci before reduction is shown in Table 2.

We now expand the basic OEF reduction shown in Equation (1) for multiple
words. As the log2(ACCmax) = 21 bits, the number can be represented in
the radix 28 with three digits. We observe 2n ≡ c (mod2n − c) and 22n ≡
c2 (mod2n − c). Thus the expanded reduction for operands of this size is
performed by representing x = x222n + x12n + x0, where x0, x1, x2 < 2n.

Elliptic Curve Cryptography on Smart Cards without Coprocessors 9

Table 2 Inner product maximum value

1 one inner product multiplication with a maximum value of (p− 1)2

2 we accumulate 17 products, 16 of which are multiplied by ω = 2

3 ACCmax = 33(p− 1)2 = 1869252 = 1C85C4h < 221

Table 3 Intermediate reduction maxima

1 Using Equation (3), given that 0 ≤ x ≤ 1C85C4h

2 max(x′) = 1734h, when x = 1BFFFFh.

3 Using Equation (4), given that 0 ≤ x′ ≤ 1734h

4 max(x′′) = 275h, when x′ = 16FFh.

The first reduction is performed as

x′ ≡ x2c
2 + x1c+ x0 (mod2n − c), (3)

noting that c2 = 289 ≡ 50 mod 239. The reduction is repeated, now repre-
senting the previous result as x′ = x′12n + x′0, where x′0, x

′
1 < 2n. The second

reduction is performed as

x′′ ≡ x′1c+ x′0 mod 2n − c. (4)

The maximum intermediate values through the reduction are shown in Ta-
ble 3. Step 1 shows the maximum sum after inner product addition. While
this value is the largest number that will be reduced, it is more important to
find the maximum value that can result from the reduction. This case can be
found by maximizing x1 and x0 at the cost of reducing x2 by one. Looking at
Table 3 again, this value is shown in step 2, as is the resulting reduced value.
The process is repeated again in steps 3 and 4, giving us the maximum reduced
value after two reductions.

Note that through two reductions, we reduced a 21-bit input to 13 bits, and
finally to 10 bits. At this point in the reduction, we could perform the same
reduction again, but it would only provide a slight improvement. Addingx′′1c+
x′′0 would result in a 9-bit number. Therefore it is much more efficient to handle
each possible case. Most important is to eliminate the two high bits, and then to

10

ensure the resulting 8-bit number is the least positive representative of its residue
class. The entire multiplication and reduction is shown in Algorithm 1.2.

To perform the three-word reduction requires three 8-bit multiplications and
then several comparative steps. After the first two multiplications, the inner
product sum has been reduced to a 13-bit number. If we were to reduce each
inner product individually, every step starting at line 13 in Algorithm 1.2 would
be required. Ignoring the trailing logic, which would add quite a bit of time
itself, this would requirem = 17 multiplicationsas opposed to the three needed
in Algorithm 1.2. By allowing the inner products to accumulate and performing
a single reduction we have saved 14 multiplications, plus additional time in
trailing logic, per coefficient calculation. Recall that we require 17 coefficient
calculations per extension field multiplication.

4.2. SQUARING

Extension field squaring is similar to multiplication, except that the two
inputs are equal. By modifying the standard multiplication routine, we are
able to take advantage of identical inner product terms. For example, c2 =
a0b2 + a1b1 + a2b0 + ωc19, can be simplified to c2 = 2a0a2 + a1

2 + ωc19.
Further gain is accomplished by doubling only one coefficient, reducing it, and
storing the new value. This approach saves us from recalculating the doubled
coefficient when it is needed again. A side benefit of all the effort is that
the maximum inner product value is slightly lower. The exact inner product
maximum is 177F8h, but this makes little difference to the reduction algorithm.
After two general OEF reductions, the maximum is reduced to 242h. As this
is still a 10-bit number, the next reduction steps would be identical to their
multiplication counterparts, and therefore the same reduction code is used.

4.3. INVERSION

Inversion in the OEF is performed via a modification of the Itoh-Tsujii al-
gorithm [14] as shown in [3], which reduces the problem of extension field
inversion to subfield inversion. The algorithm computes an inverse inGF (p17)
as A−1 = (Ar)−1Ar−1 where r = (p17 − 1)/(p − 1) = 11 . . .10p. Algo-
rithm 1.3 shows the details of this method. A key point is that Ar ∈ GF (p)
and is therefore an 8-bit value. Therefore the step shown in line 10 is only a
partial extension field multiplication, as all coefficients of Ar other than b0 are
zero. Inversion of Ar in the 8-bit subfield is performed via a table look-up.

The most costly operation is the computation of Ar . Because the exponent
is fixed, an addition chain can be derived to perform the exponentiation. For
m = 17, the addition chain requires 4 multiplications and 5 exponentiations to
a pi-th power. The element is then inverted in the subfield, and then multiplied
back in. This operation results in the field inverse.

Elliptic Curve Cryptography on Smart Cards without Coprocessors 11

Algorithm 1.2 Extension Field Multiplication with Subfield Reduction

Require: A(x) =
∑
aix

i, B(x) =
∑
bix

i ∈ GF (23917)/P (x), where
P (x) = xm − ω; ai, bi ∈ GF (239); 0 ≤ i < 17

Ensure: C(x) =
∑
cix

i = A(x)B(x), ci ∈ GF (239)
1: Define z[w] to mean the w-th 8-bit word of z
2: ci ← 0
3: if i 6= 16 then
4: for j ← m− 1 downto i+ 1 do
5: ci ← ci + ai+m−jbj
6: end for
7: ci ← 2ci – multiply by ω = 2
8: end if
9: for j ← i downto 0 do

10: ci ← ci + ai−jbj
11: end for
12: ci ← ci[2] ∗ 50 + ci[1] ∗ 17 + ci[0] – begin reduction, Equation (3)
13: t← ci[1] ∗ 17 – begin Equation (4)
14: if t ≥ 256 then
15: t← t[0] + 17
16: end if
17: ci ← ci[0] + t – end Equation (4)
18: if ci ≥ 256 then
19: ci ← ci[0] + 17
20: if ci ≥ 256 then
21: ci ← ci[0] + 17
22: terminate
23: end if
24: end if
25: ci ← ci − 239
26: if ci ≤ 0 then
27: ci ← ci + 239
28: end if

12

Table 4 Frobenius constantsB(x) = A(x)p
i

Exponent
Coefficient p p2 p4 p8

a0 1 1 1 1
a1 132 216 51 211
a2 216 51 211 67
a3 71 22 6 36
a4 51 211 67 187
a5 40 166 71 22
a6 22 6 36 101
a7 36 101 163 40
a8 211 67 187 75
a9 128 132 216 51
a10 166 71 22 6
a11 163 40 166 71
a12 6 36 101 163
a13 75 128 132 216
a14 101 163 40 166
a15 187 75 128 132
a16 67 187 75 128

The Frobenius map raises a field element to the p-th power. In practice, this
automorphism is evaluated in an OEF by multiplying each coefficient of the
element’s polynomial representation by a “Frobenius constant,” determined by
the field and its irreducible binomial. A list of the constants used is shown
in Table 4. To raise a given field element to the pi-th power, each aj , j =
0, 1, . . . , 16, coefficient are multiplied by the corresponding constant in the
subfieldGF (239).

Thus we have efficient methods for both the exponentiation and subfield
inversion required in Algorithm 1.3. Our results in Section 6 show the ratio
of multiplication time to inversion time is 1:4.8. This ratio indicates that
an affine representation of the curve points offers better performance than
the corresponding projective-space approach, which eliminates the need for an
inversion in every group operation at the expense of many more multiplications.

4.4. GROUP OPERATION

The operation in the Abelian group of points on an elliptic curve is called
“point addition.” This operation adds two curve points, and results in another
point on the curve. Using an ECC for signatures involves the repeated ap-

Elliptic Curve Cryptography on Smart Cards without Coprocessors 13

Algorithm 1.3 Inversion Algorithm inGF ((28 − 17)17)

Require: A ∈ GF (p17)
Ensure: B ≡ A−1 mod P (x)

1: B0 ← Ap = A(10)p

2: B1 ← B0A = A(11)p

3: B2 ← (B1)p
2

= A(1100)p

4: B3 ← B2B1 = A(1111)p

5: B4 ← (B3)p
4

= A(11110000)p

6: B5 ← B4B3 = A(11111111)p

7: B6 ← (B5)p
8

= A(1111111100000000)p

8: B7 ← B6B5 = A(1111111111111111)p

9: B8 ← (B7)p = A(11111111111111110)p

10: b← B8A = Ar−1A = Ar

11: b← b−1 = (Ar)−1

12: B ← bB8 = (Ar)−1Ar−1 = A−1

plication of the group law. The group law using affine coordinates is shown
below [18].

If P = (x1, y1) ∈ GF (pm), then −P = (x1,−y1). If Q = (x2, y2) ∈
GF (pm), Q 6= −P, then P + Q = (x3, y3), where

x3 = λ2 − x1 − x2, (5)

y3 = λ(x1 − x3)− y1, (6)

λ =

y2−y1
x2−x1

, if P 6= Q,

3x2
1+a

2y1
, if P = Q.

(7)

The λ term is calculated depending on the relationship of P and Q. If they
are equal, then a point doubling is performed, using the second equation. Note
that λ is undefined if the points are additive inverses, or if either point is zero.
These conditions must be examined before the group operation is performed.

4.5. POINT MULTIPLICATION

The operation required in an ECC is point multiplication, denoted by kP ,
where k is an integer and P is a point on the curve. For large k, computing
kP is a costly endeavor. However, well-studied techniques used for ordinary
integer exponentiation can be advantageously applied. The most basic of these
algorithms is the binary-double-and-add algorithm [15]. It has a complexity
of log2(k) + H(k) group operations, where H is the Hamming weight of

14

the multiplier k. On average, then, we can expect this algorithm to require
1.5 log2(k) group operations. Using more advanced methods, such as signed
digit, k-ary or sliding window, the complexity may be reduced to approximately
1.2 log2(k) group operations on average [19].

The situation is much better in certain applications, however. The most
common public-key operation for a smart card is to provide a digital signature.
The ECDSA algorithm [13] involves the multiplication of a public fixed curve
point by the user generated private key as the core operation. Because the curve
point is known ahead of time, precomputations may be performed to expedite
the signing process. Using a method devised by de Rooij in [7], we are able to
reduce the number of group operations necessary by a factor of four over the
binary-double-and-add algorithm. The de Rooij algorithm is a variant of that
devised by Brickell, Gordon, McCurley, and Wilson [5], but requires far fewer
precomputations.

Algorithm 1.4 EC Fixed Point Multiplication using Precomputation and Vector
Addition Chains
Require: {b0A, b1A, . . . , btA}, A ∈ E(GF (pm)), and s =

∑t
i=0 sib

i

Ensure: C = sA, C ∈ E(GF (pm))
1: Define M ∈ [0, t] such that zM ≥ zi for all 0 ≤ i ≤ t
2: Define N ∈ [0, t], N 6= M such that zN ≥ zi for all 0 ≤ i ≤ t, i 6= M
3: for i← 0 to t do
4: Ai ← biA
5: zi ← si
6: end for
7: Determine M and N for {z0, z1, . . . , zt}
8: while zN ≥ 0 do
9: q ← bzM/zN c

10: AN ← qAM +AN – general point multiplication
11: zM ← zM mod zN
12: Determine M and N for {z0, z1, . . . , zt}
13: end while
14: C ← zMAM

A modified form of de Rooij is shown in Algoritm 1.4. Note that the step
shown in line 10 requires general point multiplication of AM by q, where
0 ≤ q < b. This is accomplished using the binary-double-and-add algorithm.
In [7], the author remarks that during execution, q is rarely greater than 1.

The choice of t and b are very important to the operation of this algorithm.
They are defined such that bt+1 ≥ #E(GF (pm)). The algorithm must be
able to handle a multiplier, s, not exceeding the order of the elliptic curve. The
number of point precomputations and temporary storage locations is determined

Elliptic Curve Cryptography on Smart Cards without Coprocessors 15

by t + 1, while b represents the maximum size of the exponent words. Thus
we need to find a compromise between the two parameters.

Two obvious choices for an 8-bit architecture are b = 216 and b = 28, since
dividing the exponent into radix bwords is essentially free as they align with the
memory structure. This results in a precomputation count of 9 and 18 points,
respectively. The tradeoff here is the cost of memory access vs. arithmetic
speeds. As we double the number of precomputed points, the algorithm operates
only marginally faster, as shown in [7], but the arithmetic operations are easier to
perform on the 8-bit microcontroller. The problem is that the time to access such
large quantities of data, 34 bytes per precomputed point and storage location
in external RAM (XRAM), adds up. Note that even though the XRAM may
be physically internal to the microcontroller, it is outside the natural address
space, and thus a time delay is incurred for access.

For b = 216, we must perform 16-bit multiplication and modular reduction,
but only need to store 9 precomputed points and 9 temporary points. For
b = 28, however, we must now store 18 precomputed points and 18 tempo-
rary points, but now only have to perform 8-bit multiplication and modular
reduction. Implementation results show that the speed gain from doubling the
precomputations and the faster 8-bit arithmetic slightly outweighs the cost of
the increase in data access, as shown in Section 6, assuming a microcontroller
with enough XRAM is available.

5. IMPLEMENTATION DETAILS

Implementing ECCs on the 8051 is a challenging task. The processor has
only 256 bytes of internal RAM available, and only the lower 128 bytes are
directly addressable. The upper 128 bytes must be referenced through the use
of the two pointer registers: R0 and R1. Accessing this upper half takes more
time per operation and incurs more overhead in manipulating the pointers. To
make matters worse, the lower half of the internal RAM must be shared with
the system registers and the stack, thus leaving fewer memory locations free.
XRAM may be utilized, but there is essentially only a single pointer for these
operations, which are at typically at least three times slower than their internal
counterparts.

This configuration makes the 8051 a tight fit for an ECC. Each curve point in
our group occupies 34 bytes of RAM, 17 bytes each for theX andY coordinates.
To make the system as fast as possible, the most intensive field operations, such
as multiplication, squaring, and inversion, operate on fixed memory addresses
in the faster, lower half of RAM. During a group operation, the upper 128 bytes
are divided into three sections for the two input and one output curve points,
while the available lower half of RAM is used as a working area for the field
arithmetic algorithms. A total of four 17-byte coordinate locations are used,

16

Table 5 Internal RAM memory allocation

Address Function
00–07h Registers
08–14h de Rooij Algorithm Variables
15–35h Call Stack (variable size)
36–3Bh Pointers to Curve Points in Upper RAM
3C–7Fh Temporary Field Element Storage
80–E5h Temporary Curve Point Storage
E6–FFh Unused

starting from address 3Ch to 7Fh, the top of lower RAM. This is illustrated in
Table 5.

Finally, six bytes, located from 36h to 3Bh, are used to keep track of the
curve points, storing the locations of each curve point in the upper RAM. Using
these pointers, we can optimize algorithms that must repeatedly call the group
operation, often using the output of the previous step as an input to the next
step. Instead of copying a resulting curve point from the output location to
an input location, which involves using pointers to move 34 bytes around in
upper RAM, we can simply change the pointer values and effectively reverse
the inputs and outputs of the group operation.

The arithmetic components are all implemented in handwritten, loop-unrolled
assembly. This results in large, but fast and efficient program code, as shown
in Table 7. Note that the execution times are nearly identical to the code size,
an indication of their linear nature. Each arithmetic component is written with
a clearly defined interface, making them completely modular. Thus, a single
copy of each component exists in the final program, as each routine is called
repeatedly.

Extension field inversion is constructed using a number of calls to the other
arithmetic routines. The group operation is similarly constructed, albeit with
some extra code for point equality and inverse testing. The binary-double-and-
add and de Rooij algorithms were implemented in C, making calls to the group
operation assembly code when needed. Looping structures were used in both
programs as the overhead incurred is not as significant as it would be inside the
group operation and field arithmetic routines. The final size and architecture
requirements for the programs are shown in Table 6.

6. RESULTS

Our target microcontroller is the Siemens SLE44C24S, an 8051 derivative
with 26 kilobytes of ROM, 2 kilobytes of EEPROM, and 512 bytes of XRAM.

Elliptic Curve Cryptography on Smart Cards without Coprocessors 17

Table 6 Program size and architecture requirements

Type Size (bytes) Function
Code 13k Program Storage
Internal RAM 183 Finite Field Arithmetic
External RAM 306 Temporary Points

34 Integer Multiplicand
Fixed Storage 306 Procomputed Points

Table 7 Finite field arithmetic performance on a 12 MHz 8051

Time a Code Size
Description Operation (µsec) (bytes)
Multiplication C(x) = A(x)B(x) 5084 5110
Squaring C(x) = A2(x) 3138 3259
Addition C(x) = A(x) + B(x) 266 360
Subtraction C(x) = A(x)− B(x) 230 256
Inversion C(x) = A−1(x) 24489 b

Scalar Mult. C(x) = sA(x) 642 666
Scalar Mult. by 2 C(x) = 2A(x) 180 257
Scalar Mult. by 3 C(x) = 3A(x) 394 412
Frobenius Map C(x) = Ap

i
(x) 625 886

Partial Multiplication c0 of A(x)B(x) 303 305
Subfield Inverse c = a−1 4 236
aTime calculated averaging over at least 5,000 executions with random inputs.
bInversion is a collection of calls to the other routines and has negligible size itself.

This XRAM is in addition to the internal 256 bytes of RAM, and its use incurs
a much greater delay. However, this extra memory is crucial to the operation of
the de Rooij algorithm which requires the manipulation of several precomputed
curve points.

The Keil PK51 tools were used to assemble, debug and time the algorithms,
since we did not have access to a simulator for the Siemens smart card micro-
controllers. Thus, to perform timing analysis a generic Intel 8051 was used,
running at 12 MHz. Given the optimized architecture of the Siemens controller,
an SLE44C24S running at 5 MHz is roughly speed equivalent to a 12 MHz
Intel 8051.

Using each of the arithmetic routines listed in Table 7, the elliptic curve
group operation takes 39.558 msec per addition and 43.025 msec per doubling
on average.

18

Table 8 Elliptic curve performance on a 12 MHz 8051

Operation Method Time (msec)
Point Addition 39.558
Point Double 43.025
Point Multiplication Binary Method 8370
Point Multiplication de Rooij w/9 precomp. 1950
Point Multiplication de Rooij w/18 precomp. 1830

Using random exponents, we achieve a speed of 8.37 seconds for point
multiplication using binary-double-and-add. This is exactly what would be
predicted given the speed of point addition and doubling. If we fix the curve
point and use the de Rooij algorithm discussed in Section 4.5,we achieve speeds
of 1.95 seconds and 1.83 seconds, for 9 and 18 precomputations respectively.
This is a speed up factor of well over 4:1 when compared to general point
multiplication. Unfortunately, our target microcontroller, the SLE44C24S,
only has 512 bytes of XRAM where we manipulate our precomputed points.
Since we require 34 bytes per precomputed point, 18 temporary points will
not fit in the XRAM, limiting us to 9 temporary points on this microcontroller.
These results are summarized in Table 8.

7. CONCLUSIONS AND OUTLOOK

We demonstrated that a scalar multiplication of a fixed point of an EC can
be performed in under 2 seconds on an 8051 microcontroller. This is the core
operation for signature generation in the ECDSA scheme. Although the perfor-
mance and security threshold may not allow the use of our implementation in all
smart card applications, we believe that there are scenarios where these parame-
ters offer an attractive alternative to more costly smart cards with coprocessors,
especially if public-key capabilities are added to existing systems.

We also believe that our implementation can be further improved. In practice,
a smart card with an 8051-derived microcontroller that can be clocked faster
than the 5 MHz assumed in Section 6 can obviously also easily yield point
multiplication times which are below one second. In addition, 16-bit smart
card microcontrollers such as the Siemens SLE66C80S would allow for a
larger subfield and smaller extension degree, thus reaping immense benefits
in field arithmetic algorithms. Further, the use of an elliptic curve defined
over the prime subfield, as suggested in [16], could also provide a speedup.
Each of these potential improvements provides further possibilities to apply
the fast field arithmetic provided by an OEF to construct ECCs on smart card
microcontrollers without additional coprocessors.

Elliptic Curve Cryptography on Smart Cards without Coprocessors 19

8. ACKNOWLEDGEMENTS

The authors would like to thank Jorge Guajardo and Pedro Soria-Rodriguez
for their contribution of the even composite field multiplication implementation.

References

[1] Daniel V. Bailey. Optimal Extension Fields. Major Qualifying Project
(Senior Thesis), 1998. Computer Science Department, Worcester Poly-
technic Institute, Worcester, MA, USA.

[2] Daniel V. Bailey and Christof Paar. Optimal Extension Fields for Fast
Arithmetic in Public-Key Algorithms. In Advances in Cryptology –
CRYPTO ’98. Springer-Verlag Lecture Notes in Computer Science, 1998.

[3] Daniel V. Bailey and Christof Paar. Efficient Arithmetic in Finite Field
Extensions with Application in Elliptic Curve Cryptography. Journal of
Cryptology, to appear.

[4] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography.
Cambridge University Press, 1999.

[5] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast
exponentiation with precomputation. In Advances in Cryptography —
EUROCRYPT ’92, pages 200–207. Springer-Verlag, 1993.

[6] Certicom Corp. The Elliptic Curve Cryptosystem for Smart Cards. online
white paper, http://www.certicom.ca/ecc/wecc4.htm, 1998.

[7] Peter de Rooij. Efficient exponentiation using precomputation and vector
addition chains. In Advances in Cryptography— EUROCRYPT ’98, pages
389–399. Springer-Verlag, 1998.

[8] E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Van-
dewalle. A fast software implementation for arithmetic operations in
GF (2n). In Asiacrypt ’96. Springer-Verlag Lecture Notes in Computer
Science, 1996.

[9] E. De Win, S. Mister, B. Preneel, and M. Wiener. On the Performance
of Signature Schemes Based on Elliptic Curves. In Algorithmic Number
Theory: Third International Symposium, pages 252–266, Berlin, 1998.
Springer-Verlag Lecture Notes in Computer Science.

[10] P. Gaudry, F. Hess, and N. P. Smart. Constructive and Destructive Facets
of Weil Descent on Elliptic Curves. technical report HPL 2000-10,
http://www.hpl.hp.com/techreports/2000/HPL-2000-10.html, 2000.

[11] Jorge Guajardo and Christof Paar. Efficient Algorithms for Elliptic Curve
Cryptosystems. In Advances in Cryptology — Crypto ’97, pages 342–356.
Springer-Verlag Lecture Notes in Computer Science, August 1997.

20

[12] R. Harley, D. Doligez, D. de Rauglaudre, and X. Leroy.
http://cristal.inria.fr/%7Eharley/ecdl7/.

[13] IEEE. Standard Specifications for Public Key Cryptography. Draft, IEEE
P1363 Standard, 1999. working document.

[14] T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative
inverses in GF (2m) using normal bases. Information and Computation,
78:171–177, 1988.

[15] D. E. Knuth. The Art of Computer Programming. Volume 2: Seminumer-
ical Algorithms. Addison-Wesley, Reading, Massachusetts, 2nd edition,
1981.

[16] Tetsutaro Kobayashi, Hikaru Morita, Kunio Kobayashi, and Fumitaka
Hoshino. Fast Elliptic Curve Algorithm Combining Frobenius Map and
Table Reference to Adapt to Higher Characteristic. In Advances in Cryp-
tography — EUROCRYPT ’99. Springer-Verlag Lecture Notes in Com-
puter Science, 1999.

[17] Arjen Lenstra and Eric Verheul. Selecting cryptographic key sizes. In
Public Key Cryptography — PKC 2000. Springer-Verlag Lecture Notes
in Computer Science, 2000.

[18] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Aca-
demic Publishers, 1993.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1997.

[20] P. Mihăilescu. Optimal Galois field bases which are not normal. Fast
Software Encryption rump session, 1997.

[21] D. Naccache and D. M’Raı̈hi. Cryptographic smart cards. IEEE Micro,
16(3):14–24, 1996.

[22] D. Naccache, D. M’Raı̈hi, W. Wolfowicz, and A. di Porto. Are crypto-
accelerators really inevitable? In Advances in Cryptography — EURO-
CRYPT ’95, pages 404–409. Springer-Verlag Lecture Notes in Computer
Science, 1995.

[23] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

[24] R. Schroeppel, H. Orman, S. O’Malley, and O. Spatscheck. Fast key
exchange with elliptic curve systems. Advances in Cryptology — CRYPTO
’95, pages 43–56, 1995.

[25] Sencer Yeralan and Ashutosh Ahluwalia. Programming and Interfacing
the 8051 Microcontroller. Addison-Wesley Publishing Company, 1995.

